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a b s t r a c t

The functionality and reliability of Li-ion batteries as major energy storage devices have received more
and more attention from a wide spectrum of stakeholders, including federal/state policymakers, business
leaders, technical researchers, environmental groups and the general public. Failures of Li-ion battery
not only result in serious inconvenience and enormous replacement/repair costs, but also risk catas-
trophic consequences such as explosion due to overheating and short circuiting. In order to prevent
eywords:
rognostics
ealth monitoring
i-ion battery
stimation
rediction

severe failures from occurring, and to optimize Li-ion battery maintenance schedules, breakthroughs in
prognostics and health monitoring of Li-ion batteries, with an emphasis on fault detection, correction and
remaining-useful-life prediction, must be achieved. This paper reviews various aspects of recent research
and developments in Li-ion battery prognostics and health monitoring, and summarizes the techniques,
algorithms and models used for state-of-charge (SOC) estimation, current/voltage estimation, capacity
estimation and remaining-useful-life (RUL) prediction.
UL © 2011 Elsevier B.V. All rights reserved.
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. Introduction

With the growing awareness of climate change, anxiety of
epleting fossil fuel and the interest in “electric drive”, more con-
umers have begun to consider purchasing battery-driven hybrid

among all vehicles sold in 2009. Given the tough economic situation
in the last year, the U.S. hybrid sales dropped only 7.6%, compared
to 21.4% for overall vehicle sales. In California, 55,553 new HEVs
were sold in 2009; in DC, every 3.7 new HEVs were purchased for
ehicles for their higher MPG rating and lower individual carbon
ootprint. Analysis of the 2009 Year-end Hybrid Market Dashboard
1] shows that the U.S. HEV market shares have increased to 2.8%

∗ Corresponding author. Tel.: +1 302 220 3402; fax: +1 513 556 4647.
E-mail address: zhang2jg@yahoo.com (J. Zhang).

378-7753/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.03.101
every 1000 residents in the past year. The forecast for 2010 hybrid
sales is still promising given the exciting introductions of PHEV and
accelerating economic recovery.

The technological breakthroughs in battery life, abuse toler-

ance and drive range will eventually result in the development
of cost-effective, long lasting Li-ion batteries. However, no mat-
ter how good the Li-ion battery is, it will degrade over time due
to aging, environmental impacts and dynamic loading. Therefore,

dx.doi.org/10.1016/j.jpowsour.2011.03.101
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:zhang2jg@yahoo.com
dx.doi.org/10.1016/j.jpowsour.2011.03.101
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t is always desirable to be able to detect the underlying degrada-
ion, take countermeasures to impede the developing faults and
ltimately prevent the catastrophic failures from occurring. This

s how health monitoring works. Prognostics, on the other hand,
eals with fault propagation/degradation and predicts how soon a
ystem/component will fail, or reach a level that cannot guaran-
ee satisfactory performance. Health monitoring and prognostics
re two integral parts in realizing near-zero-breakdown perfor-
ance. Preferably, prognostics is conducted first, with or without

nformation extracted from health monitoring. For cases in which
rognostics cannot accurately predict remaining-useful-life, health
onitoring is relied on to disclose the health status of a Li-ion

attery. Effective health monitoring and prognostics functionality
or Li-ion batteries will adequately address customers’ concerns
egarding safety issues and help companies establish early leader-
hip positions in the field.

Health monitoring and prognostics for machinery has gar-
ered much attention in the research community in recent years.
undreds of papers in this field, including theories and practical
pplications, appear every year in conference proceedings, aca-
emic journals and technical reports. The most popular models,
lgorithms and technologies for machinery diagnostics and prog-
ostics can be found in a review given by Jardine et al. [2]. However,
Li-ion battery, which features electro-chemical behaviors, is fun-
amentally different from a mechanical system in various aspects.
irst of all, the electro-chemical reactions inside a Li-ion battery
ack are almost inaccessible using common sensor technologies,
esulting in the scarcity of data for analysis. Secondly, in comparison
o waveform type machinery data, the most available monitoring
ata collected from Li-ion battery is value-typed such as voltage,
urrent and temperature. Lastly, the operation profiles of Li-ion bat-
ery are much more dynamic than those of mechanical systems. For
xample, in a PHEV the Li-ion battery is subject to drive behaviors,
lectronic device usages, driving environments, etc. Other fac-
ors affecting the performance and degradation of Li-ion batteries
nclude aging-dependent capacity loss, capacity imbalance among
attery cells, self-discharge, etc. Therefore, the development of
ppropriate methodologies and algorithms for Li-ion battery health
onitoring and prognostics must take into account the uniqueness

f Li-ion battery system.
This review summarizes different methods to predict the state

f charge, voltage, current and capacity, as well as techniques and
ethods for predicting remaining useful life, of Li-ion batteries.
ote that since Li-ion batteries have come into popular use in only

he past 5 or 6 years, the literature that directly addresses diagnos-
ics and prognostics aspects are limited in terms of quantity and
elevance. For the purpose of establishing a broader perspective
ome traditional diagnostic techniques for other types of batter-
es such as lead-acid batteries and nickel metal hydride batteries
re also covered in this review. It should also be noted that terms
uch as “degradation”, “health” and “failure” are used interchange-
bly when discussing health monitoring. The reason is that “failure”
as multiple definitions in various situations and both “degrada-
ion” and “health” are related to “failure” in one way or another.
ne description of failure assumes that failure only depends on

he condition variables. Once the condition variable exceeds a pre-
etermined threshold, a failure has occurred. Other definitions of
ailure are judged by criteria such as performance (performing at
nsatisfactory level), functionality (incapable of conducting spe-
ific function) and availability (machine breaks down) [2]. The
ecessity of studying the mechanisms of specific failure modes,
uch as over-heating, over-charging, chemical and metal con-

amination, has attracted more and more attention. Due to the
omplexity of experiment design and critical safety issues, few
eports are available in the literature up to now. The progress of
arious projects can be found in [3]. Some published papers related
urces 196 (2011) 6007–6014

to this topic with emphasis on electro-chemical analysis are [4–6].
The subsequent sections of this paper are arranged as fol-

lows: Sections 2–5 explain the techniques, algorithms and methods
applied in SOC estimation, current/voltage estimation, capacity
estimation and remaining-useful-life prediction, including the pros
and cons of each method; and the final section contains conclusions
drawn based on this review.

2. State of charge (SOC) estimation

State of charge estimation has always been a big concern for
all battery driven devices. An accurate SOC estimation not only
assesses the reliability of products, but also provides critical infor-
mation such as the remaining useful energy and/or the remaining
usable time. Moreover, an efficient and accurate SOC estimation
will guide the design of charging/discharging strategies (cell-level
balancing) which is of great importance in high current application
where individual cells are likely to have different capacities due to
manufacture variation, natural aging, degradation, etc. In this case,
an optimal charging/discharging strategy will effectively prevent
the occurrence of abnormities such as overcharging, overheating
and over-discharge from happening. As a result, the reliability of
the energy storage device will be enhanced and the product life
extended.

A multitude of SOC estimation methods has been introduced
since the 1980s, the adoption of which has been gradual in vari-
ous academic research and industrial applications. However, the
definition of SOC has yet to be agreed upon by all of the rele-
vant stakeholders—this ambiguity has resulted in much confusion
in understanding the meaning and usefulness of SOC and its
involvement in further analytical tasks, such as capacity estimation
and remaining-useful-life prediction. To address this confusion,
this section starts with itemizing and explaining some common
definitions of SOC, which hopefully will give readers a broader
perspective of the issues. The SOC estimation methods introduced
will focus mainly on models, algorithms and technologies without
emphasizing the definition of SOC.

Charge counting or current integration shown in (2.1) is proba-
bly the most classical SOC calculation method.

SOC = 1 −
∫

i · dt

Cn
(2.1)

where i is the current; Cn is the nominal capacity; t is the time. This
approach requires dynamic measurement of the cell/battery cur-
rent, the time integral of which is considered to provide a direct
indication of available capacity. The nominal capacity, however, is
measured at a constant discharge rate under controlled temper-
ature. These conditions seldom occur in real-world applications.
Therefore, the use of nominal capacity as the total capacity remains
controversial [7]. Besides, due to its reliance on integration, errors
in terminal measurements accumulate and large SOC errors may
occur, thus requiring a recalibration at regular intervals [8]. Another
version of SOC calculation considers the effect of coulombic effi-
ciency and is given as follows:

SOC = 1 −
∫

i · � · dt

Cn
(2.2)

where � is the coulombic efficiency defined as the ratio between
charging energy and discharging energy required to restore origi-
nal capacity. � is equal or less than 1. Still another version of SOC
was simply in a linear relationship with a preset voltage level. For
example, when minimum discharge voltage was reached during

discharge cycle, the battery was considered fully discharged at 0%
SOC [9].

Making extensive and costly tables comparing SOC and OCV
(open circuit voltage) under different temperatures has long been
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he common practice of battery manufacturers for preparing man-
facturer’s recommended datasheets. Once sufficient tables were
ade and stored appropriately, the inference of SOC from OCV

ecame very straightforward. Guiheen et al. disclosed another
imilar SOC estimation method which looked for recording rela-
ionships of the magnitude of ramp-peak current and SOC [9]. This

ethod, however, requires extensive testing and table making as
ell and is taken more as a supplemental means to assure the accu-

acy and effectiveness of traditional SOC–OCV tables. One major
rawback of these table-making efforts is that the real-world condi-
ions seldom match exactly those recorded, resulting in significant
iscrepancies between the estimated SOC and true SOC [10].

Instead of relying exclusively on SOC–OCV tables, more
dvanced SOC estimation methods based on fuzzy logic, autore-
ressive moving average, artificial neural network, extended
alman filter and support vector machine have been proposed in
cademic journals, conference proceedings and filed patents. To
etter evaluate and explain the advantage and disadvantage of
hese approaches in SOC estimation, brief descriptions of these
lgorithms are given first. The detailed approaches in tackling SOC
stimation follow. Finally, the pros and cons of these approaches
re discussed.

.1. Fuzzy logic

Instead of pursuing only absolutely clean and precise informa-
ion, fuzzy logic methods allow a certain level of uncertainty and
mbiguity in processing incomplete and noisy data. The imple-
entation of fuzzy logic method consists of 4 parts: rule-based

nput–output relationship, membership function for inputs and
utputs, reasoning and defuzzification of outputs.

Salkind et al. [11] applied the fuzzy logic methodology to esti-
ate SOC using EIS (electro-chemical impedance spectroscopy)

ata both from Li/SO2 battery and NiMH (nickel metal hydride)
attery. In the Li/SO2 battery case, the model had 3 inputs and 1
utput. The three inputs were imaginary impedances measured at
different frequencies—the output was SOC. In the NiMH battery

ase, the model had 2 inputs and 1 output. The two inputs were
apacitance (an element in assumed battery circuit) and cycle num-
er. Again, the Output was SOC. The empirical relationship between
apacitance and imaginary impedance was established to facilitate
apacitance estimation. The reported accuracy was within a 10%
argin of error. In [4], only a subset of electro-chemical model

arameters (3–4) were found to be very important and therefore
erved as inputs for the Fuzzy logic model in order to speed up EIS
esting and reduce redundancy in data collection. However, the size
nd high instrument cost for EIS is likely to inhibit the extension of
hese approaches to on-line application.

.2. Autoregressive moving average (ARMA)

Autoregressive moving average (ARMA) model is a popular
tatistics model applied to time series and index-based data to
tudy the underlying patterns of a system and/or predict near-
uture values in a series. ARMA models are composed of two parts:
n autoregressive (AR) part and a moving average (MA) part. An
RMA model, denoted as ARMA (p, q) is expressed as follows:

ta + εt

p∑

i=1

ϕixt−i +
q∑

i=1

�iεt−i (2.3)

here x is time series or index-based data; a is constant; ε is white

oise; p is AR order; q is MA order; ϕ and � are model coefficients.

In order to infer the SOC from impedance measurement,
ozlowski [4] developed a two-electrode electro-chemical model
nd used measured impedance data for validation. The inputs of
urces 196 (2011) 6007–6014 6009

this model, such as electrolyte resistance, charge transfer resis-
tance and double-layer capacitance, were extracted and fed into a
second-order ARMA model to compute the SOC. ARMA is basically a
regression model with noise added. The accuracy of an ARMA model
depends on completeness and representativeness of the historical
data used in training. In real world applications, it is more likely
that the historical data is incomplete and recursive model train-
ing and updating is required to make a reasonable estimation and
one-step-ahead prediction.

2.3. Artificial neural network (ANN)

An ANN, which consists of various nodes and layers, is a sim-
ple imitation of human brain. It requires little expert knowledge
in modeling complex systems and adopts a “black box” approach
to various sources of data. Due to its simplicity in handling data
from, and structure of, complex or even unknown systems, ANN
has become one of the most widely used methods in complex sys-
tem modeling. A typical simple neural network consists of 3 layers:
an input layer, a hidden layer and an output layer. Depending on the
specific needs, such as number of inputs and outputs, the number of
nodes within different layers can be defined, for convenience or out
of necessity. The lines connecting each pair of nodes are denoted
as weights, which are literally mapping functions from one space
to another space.

In [4], battery internal parameters, such as charge transfer
resistance and electrolyte resistance, were used as inputs to ANN
to estimate the SOC. Other approaches avoided the need for
impedance measurement and utilized much less resource inten-
sive external measurements as the inputs to the neural network.
In [12], two neural networks were used to adaptively predict when
a predetermined voltage level would be reached. The first NN pre-
dicted the remaining useful energy and remaining usage time in
the current discharge cycle. The inputs of this NN included a preset
discharge voltage and the temperature measured. The second NN
assigned weights on the first neural network in order to compen-
sate for manufacturing variation, aging effects and specific usage
patterns under testing conditions. The inputs of this NN were all
acquired from external measurements, including initial voltage,
initial number of cycles, the beginning of discharge period, and the
instant at which the initial measurements are available. However,
this method was proposed specifically for lead-acid battery moni-
toring. One assumption made was that the discharge current was
low for the most of the time.

2.4. Electrochemical impedance spectroscopy (EIS)

EIS has been widely used to provide insight into electrochemi-
cal reactions happened within chemical batteries which are usually
inaccessible to common sensory technology. Before implementing
EIS, an appropriate electrochemical model (e.g. imaginary battery
circuit) should be proposed first. EIS can then trigger AC signals
at certain frequencies and calculate the numerical values of mod-
eled components such as resistors, capacitors and inductors, which
will form the foundation for further analysis. However, EIS is not
easy to use, and results from EIS are hard to reproduce mainly
due to the fact that systems being measured must maintain steady
state throughout testing. In [13], Blanke et al. emphasized the
importance of adopting appropriate methods in using EIS. For
SOC estimation, it was determined that there is a close relation-
ship between battery SOC and a specific frequency range at which

capacitive impedance equaled inductive impedance. Moreover, this
frequency range (f±) varied monotonically and reproducibly as a
function of battery SOC. Therefore, SOC could be found by deter-
mining the desired frequency range f±.
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out in both the steady state SOC test and dynamic state SOC test.
The reported RMS errors were around 5% and 5.76% respectively.
However, information about the asserted “true SOC” was not given.
There is a possibility that the “true SOC” was de facto calculated
Fig. 1. A complete picture of ope

.5. Extended Kalman filter (EKF)

Extended Kalman filter (EKF) is an extension of Kalman filter
KF) for a non-linear application. By using partial derivatives and
aylor series expansion, EKF linearizes the “Predict” and “Update”
unctions for current estimates. After linearization, the remaining
rocess resembles that when using a traditional Kalman filter. A
omputation diagram is illustrated in Fig. 1 [14]. EKF, however,
annot deal with systems with highly non-linear characteristics
ince first order Taylor series approximation cannot give enough
ccuracy in a highly non-linear case.

Plett [15] reviewed various SOC estimation methods includ-
ng Coulomb counting, chemistry-dependent, OCV measurement,

olecule-scale electro-chemical model and impedance spec-
roscopy. The disadvantages of these methods were pointed out
uch as impracticality for HEV applications, inaccuracy in dynamic
OC estimation and extensive expertise required in micro-scale
odeling. To enable dynamic SOC estimation with enhanced

ccuracy, a physics-based circuit model named “enhanced self-
orrecting (ESC) model” was proposed with emphasis on the
reatment of hysteresis effect, temperature effect and relaxation
ffect. EKF was implemented based the proposed model and model
tate vector including SOC (as discussed in [16]) was predicted
nd updated recursively. The “enhanced self-correcting model” was
ormulated as follows:

k = OCV(zk) + hk + fil(ik) = R · ik (2.4)

here yk is the estimated voltage; k is index; z is SOC; h is electro-
hemical hysteresis; fil(·) is some dynamic operation filtering its
perand; R is battery resistance; i is current. The main drawback
f this approach is the use of OCV–SOC tables, which are costly
nd laborious to obtain, and are inaccurate to some extent when
sed in real-world applications. In [17], a modified OCV–SOC rela-
ionship was proposed with enhanced accuracy and consistency
mong batteries of the same type. A simple battery circuit was
mployed, and the use of dual EKFs for SOC and capacity estimation
as discussed. The circuit model is shown in Fig. 2 the voltage esti-
ation equation referenced in (2.5). The calculation of the OCV in

he equation relied on the modified OCV–SOC relationship, which
as generic enough for cells with comparable variations in initial
apacities. In order to improve the robustness of the EKF framework
nder highly non-linear conditions, the measurement noise model
as reformulated to function as a countermeasure for large voltage

rrors induced by the extreme operating conditions and inherent
of extended Kalman filter [14].

variations between a simple model and the true system. However,
the accuracy of capacity estimation seems highly dependent on
the selection of initial values, and inappropriate initialization could
result in significant delay in the convergence for estimated values
and true values.

Vk = OCV(SOCk, Cn,k) − Vd,k − Ri · ik (2.5)

2.6. Support vector machine (SVM)

Support vector machine (SVM) is a state-of-the-art classifica-
tion and regression algorithm widely used in signal processing
tasks such as text recognition and bioinformatics. As a kernel
based method, SVM projects the original low-dimension data space
to high-dimension feature space. This projection is equivalent to
transforming non-linear problems in lower dimension to linear
problem in higher dimension. Regulated by the well-defined con-
straint conditions (Karush–Kuhn–Tucker conditions), only a small
subset of training data referred to as support vectors will remain
and be used in formulating classification and regression equations.

In [18], Hansen and Wang used SVM to build an empirical SOC
estimation model. No battery circuit was needed. The input vector
included current, voltage, SOC calculated from the previous step
and voltage change in the last 1 s. The output was SOC in current
step. The SOC estimation model was trained using steady state data
(constant current pulse) only. The evaluation of results was carried
Fig. 2. Simple battery circuit. OCV represents open circuit voltage, also called equi-
librium potential. Rd and Ri are internal resistances. Cd is equivalent double layer
capacitance.
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sing Coulomb counter, as is the case for the “true SOC” in a similar
ynamic test (5th urban dynamometer driving schedule) discussed

n [16]. Since Coulomb counting was dismissed by the author in the
rst place, it could be questionable to take results from Coulomb
ounter as the “true SOC”. Besides, a good SVM regression model
equires fine tuning of some empirical parameters, such as constant
and error tube �, among others. This trial and error process is likely

o be time-consuming.

. Voltage estimation

The effort of voltage estimation is to establish a sound battery
odel, which addresses chemical, electrical and physical prop-

rties of a battery to some extent and is adequate enough to
imulate battery performances under different conditions. A sound
attery energy estimation method not only guarantees consistent
ower supply to any electrical devices, but also supports near-
ero downtime performance for safety critical applications such
s the installation of cardiac pacemaker powered by Li-ion bat-
ery, and the adoption of a Li-ion battery as emergency energy
ource, due to its low self-discharge rate. There are 2 areas of focus
n voltage estimation. One area is to propose efficient OCV (open
ircuit voltage) estimation. The other one is to improve the effec-
iveness of voltage monitoring in protection circuit so that severe
ailures such as overcharging and overheating can be prevented. A
ew estimation methods [19–23] that have long been adopted by
ndustries are receiving more and more criticisms and suspicions

ainly because these methods required numerous expensive tests
or purpose of extensive table-makings and unsatisfactory accu-
acies were reported frequently under specific conditions. More
dvanced methods and technologies are needed to tackle the chal-
enges.

In [24], Gao et al. built an empirical Li-ion battery model which
s capable of estimating OCV (open circuit voltage) under a range of
ischarge rates and ambient temperatures. The proposed battery
ircuit is similar to that in Fig. 2, some ideas of model reference
daptive control (MRAC) [25] were embodied in the modeling pro-
ess. A reference discharge model with arbitrarily chosen discharge
ate and ambient temperatures was set first. This reference model
as then adapted by introducing a rate factor, temperature fac-

or and potential correction terms to fit in discharge scenarios
nder varying discharge rates and temperatures. The accuracy of
his model relies greatly on the fine-tuning of various empirical
arameters, such as the rate factor, the temperature factor, and
he model resistances. Other concerns include the effect of battery
eterioration against the accordance between experimental data
nd simulation data, as well as the applicability of this model to
ischarge scenarios in which discharge rates and temperatures are
ifferent from those used in modeling (in this case, rate factor and
emperature factor are unknown).

To compensate for the effects of aging and varying discharge
ates, Hirsch et al. [19] established a universal normalized dis-
harge voltage curve for lead-acid batteries. The comparison of the
ormalized measurement to the universal normalized discharge
oltage curve would lead to the determination of percent of the
ischarge level and reserve time (an equivalent entity to total
apacity as claimed). One beneficial consequence of this normal-
zation method is that the relationship between discharge voltage
nd time becomes almost linear for the most parts of the normal-
zed time scope (close to 90%). This feature definitely benefits the
ccuracy of reserve time estimation. However, since this empirical
ormalization method was proposed purely based on the obser-

ations under certain specific conditions, it is hard to assess its
sability to more dynamic operating profiles. In addition, careful
alidation must be made to apply this approach to Li-ion battery
ase.
urces 196 (2011) 6007–6014 6011

In [26], Puglia et al. designed a high power Li-ion battery device
(300 V and 1.2 MW h) for the US navy’s Advanced SEAL Delivery Sys-
tems. To ensure the reliability and safety of this large battery pack,
failure prevention measures were employed with an emphasis on
voltage monitoring. The first of these measures involves adding
load on the cell when cell voltage rises beyond a preset voltage level.
The second measure, to be employed if the first measure fails, alerts
the operator or automatically reduces charging current. If these two
measures fail, the final measure is employed and the charging pro-
cess is terminated. However, the challenge lies in the fact that the
propagation rate of failures under extreme cases, such as crashes
and circuit shorts, is likely to be much faster than the monitoring
rate. In such scenarios, the generation of excessive heat will not
stop even if the circuit is switched off.

4. Capacity estimation

Capacity is rated in ampere-hours (A h), which quantifies the
available energy stored in a battery. The loss of capacity, as a result
of increased impedance, mainly on a battery’s cathode, will cause
reduced performance when electrical devices cannot operate at a
satisfactory level and functional failure when the battery fails to
supply the required energy and power. The rate of capacity loss is
highly dependent on the charging/discharging conditions such as
maximum charge voltage, depth of discharge, magnitude of cur-
rent, load profiles, and temperature. Specific to traditional Li-ion
batteries, the Li-ion battery also suffers permanent capacity loss
over time. For example, a typical laptop Li-ion battery stored at
100% SOC in 25 ◦C will irreversibly lose 20% of total capacity every
year [27]. Thus, there is a need to accurately estimate the avail-
able capacity for reliability and better management of energy use.
Furthermore, accurate battery capacity estimation will benefit the
design of innovative materials for battery fabrication and protec-
tion circuits that balance battery longevity and energy needs.

Estimation of battery capacity is closely related to that of state-
of-charge (SOC), as SOC is usually defined as the ratio between
available capacity and rated capacity. Manufacturers, however,
determine the rated capacity, or nominal capacity, for a battery
by conducting measurements under a constant discharge rate and
in a controlled environment. Therefore, the use of rated capacity
as the reference point often becomes inappropriate for real-world
applications. As mentioned previously, SOC may have different
meanings and definitions for specific applications and goals. In con-
trast, battery capacity is more well-defined, the estimation of which
has become a standalone research field.

There are a few battery capacity estimation models that are
widely cited in the literature, including linear model [28], rate-
dependent model [28–31] and relaxation model [28–30,32]. These
models are based on different assumptions and have a unique bal-
ance of simplicity, accuracy, computational cost etc. Park et al. [28]
reviewed the pros and cons of the aforementioned models, and
challenged their effectiveness and accuracy in varying operating
profiles. In this review it was determined that the DC/DC converter
plays an important role in capacity estimation since a DC/DC con-
verter can change a load profile, based on its own characteristics.
Therefore, it was decided that experimentation and measurement
is the most reliable way to estimate true capacity. They further
advocated that the improved battery capacity model should take
into account the effect of the DC/DC converter.

In [33], Chan et al applied artificial neural network (ANN) to
build a correlation between discharge current and capacity for

lead-acid batteries. This is a single input and single output neu-
ral network with 4 nodes in the hidden layer. The training process
involved one set of current–capacity pairs within one cycle and
another set of data from the same cycle in the testing process. The
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esults were compared with capacity measurements with an aver-
ge error rate below 1%. However, since too little data was used to
rain the neural network, the model could be subjected to “over-
tting” of training data. As well, the modeling approach assumed
hat aging and degradation of the battery would not play a major
ole in capacity estimation, which could be the case in lead-acid
atteries, but unfortunately not for Li-ion batteries.

Extended Kalman filter has also been used in capacity estima-
ion, usually together with SOC estimation. In [16], a dual extended
alman filters framework was proposed for state estimation (fast
hanging variables such as SOC) and parameter estimation (slowly
hanging variables such as capacity). The main justifications for
sing two separate EKFs instead of one were to circumvent the need
f tackling large matrix and to provide flexibility for specific needs
nd interests (e.g. one may be only interested in tracking capacity
ade and SOC; in this case, other variable estimations, though not
esired, will inevitably utilize valuable computational power and
esult in reduced overall computation speed). Based on the specific
tate/parameter models involved, some interactions between two
KFs may exist.

In [34], a multivariate linear model was disclosed to establish
he relationship between capacity and a multitude of inputs includ-
ng internal DC resistance, open circuit voltage (OCV), temperature,
up and Iup (voltage and current measured at the transition from
ormal charge to over-charge), Vdn and Idn (voltage and current
easured at the transition from overcharge to normal charge). The
agnitudes of Vup, Iup, Vdn and Idn were derived from an internal

esistance measurement process in which controlled current pulses
ere applied to the battery. There are several concerns regarding

his approach. Firstly, OCV can be measured directly but the pro-
ess is very time-consuming. Secondly, capacitive resistance was
gnored in resistance measurement (though this practice may be
pplicable for lead-acid batteries). Thirdly, for such data-driven
odeling, over-fitting or under-fitting is always a big challenge. In

ddition, if this approach were to be applied to Li-ion battery appli-
ations, care must be taken in calculating resistive impedance since
he relationship between the current and the voltage is regarded
s highly non-linear [35].

External measurements such as voltage, current and surface
emperature, though easy to access, are subject to a multitude
f influential factors, such as charging rate, discharging rate, and
mbient temperature, and therefore do not well represent the
nherent properties of Li-ion batteries. In investigating the root
auses of degradation mechanisms and their effect on capacity
oss, changes in the electrical, chemical and physical properties of
node, cathode and electrolyte during controlled cycling test must
e studied.

In [5], Li-ion pouch cells (LiNi0.8Co0.15Al0.05O2/graphite) were
ycled over 100% DOD (depth of discharge) at 25 ◦C and 60 ◦C
o study the adverse affects of temperature extremes on Li-ion
attery capacity. Advanced inspection methods such as electro-
hemical impedance spectroscopy (EIS), X-ray diffraction (XRD),
aman spectroscopy and current-sensing atomic force microscopy
CSAFM) were used to investigate the changes in the electro-
hemical properties and the physical properties of anode and
athode. There are two conclusions of this research. First, the capac-
ty loss at the cathode accounted for the majority of overall capacity
ade. Second, the root cause of capacity loss at the cathode is the
ccumulation of a low-conductivity SEI (solid electrolyte inter-
ace) layer on the cathode. Zhang et al. [6] studied the effects of
arious operating conditions such as ambient temperatures, varia-
ions in SOC and cycling profiles, on a baseline cell chemistry. The

ocus of this study was on characterizing the shifting electrical,
hemical and physical properties of the anode (carbon), cathode
LiNi0.8Co0.2O2), electrolyte (diethyl carbonate–ethylene carbonate
iPF6) and current collectors. Four factors that contribute to Li-ion
urces 196 (2011) 6007–6014

battery degradation mechanisms were identified: dissolution and
non-uniformity of the SEI layer on the anode; morphology changes,
phase separation and capacity loss on the cathode; current collec-
tor corrosion on the cathode; and chemical contamination of the
electrolyte.

5. Remaining-useful-life (RUL) prediction

Remaining-useful-life (RUL), also called remaining service life
and residue life, refers to the available service time left before a
system degrades to an unacceptable level. Successful RUL predic-
tion for batteries is highly desired; it enables failure prevention
in a more controllable manner in that effective maintenance can
be administered in appropriate time to correct impending faults
without permanently damaging battery as traditional protection
circuits do. In addition, accurate RUL prediction for batteries can
enable the development of new innovative service models dedi-
cated to exploring new opportunities and markets. An example of
such a service model will be introduced in Section 6: “Smart Bat-
tery Mobility Service System”. Successful RUL prediction for Li-ion
batteries must take into account current health status of battery,
history data/information, failure mechanisms, failure propagation,
etc. Although RUL prediction for Li-ion batteries has not been the
focus in the literature up to now, an increasing number of research
efforts are being developed, as can be seen in the numerous projects
that have been recently sponsored, or led directly, by federal agen-
cies such as DOE and NASA.

5.1. Relevance vector machine (RVM)

RVM is a machine learning technique for solving regression and
classification problems. RVM has nearly identical function form to
support vector machines (SVM), however, the ways that they are
formulated and used are dramatically different. Compared to SVM,
RVM is constructed under Bayesian framework and thus has prob-
abilistic outputs. Also, RVM models are sparser than SVM models,
while maintaining comparable accuracy in results. A more detailed
discussion of RVM and SVM can be found in [36]. When used for
regression problems, the most distinguished merit of RVM is its
capability to control “under-fitting” and “over-fitting”—Essentially
“Ockham’s Razor” at work [37]. A regression problem in RVM is
reformulated as follows:

p(tn|xn, w, �2) = N(y(xn; w), �2) (5.1)

where tn is the regression target (output) which follows normal
distribution with mean y and variance �2; x is the input; y is the
regression model without noise; and w is the regression coefficient.
Further analysis and derivation can be found in [36–38].

In [39], an RVM regression model was built using battery
internal parameters inferred from an electro-chemical model. The
underlying assumption was that the internal parameters, such
as charge transfer resistance and electrolyte resistance, would
change gradually as battery degradation proceeded. And RVM
model was used to accurately track the degradation trend. To pre-
dict remaining-useful-life, particle filter (PF) was used to adaptively
choose appropriate coefficients for the RVM model and extrapo-
lation was applied from the latest degradation model to find the
end-of-life point, which determined the length of the RUL.

5.2. Particle filter (PF)

Particle filter is a sequential Monte Carlo method, which esti-

mates the state PDF (probability distribution function) from a set
of “particles” and their associated weights. The benefit of using state
PDF is that it enables appropriate management of inherent estima-
tion uncertainty. The use of weight, on the other hand, adjusts the
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tate PDF to its most likely form. The particles are inferred recur-
ively by two alternate phases: a prediction phase and a update
hase. In the prediction phase, the value of each particle for the next
tep is estimated by previous step information. No measurement or
bservation is involved in this step. In the update phase, the value
f each particle estimated in the prediction phase is compared with
easurements and updated accordingly.
Saha et al. [39] applied particle filter to estimate the coeffi-

ients of an exponential growth model for electrolyte resistance
nd charge transfer resistance. The relationship among electrolyte
esistance, charge transfer resistance and capacity was established
o infer future capacity from the predicted electrolyte resistance
nd charge transfer resistance. Finally, RUL was calculated as the
nterval between the current cycle and the end-of-life (denoted by
reset capacity value) cycle. However, the reliance on impedance
easurement inhibits this prediction methodology’s use in real-
orld applications, mainly due to the cost of equipment, stringent
easurement requirements and space constraints. Without using

IS equipment, Saha and Goebel [40] again built an empirical capac-
ty model which took coulombic efficiency factor and relaxation
ffect into account. Particle filter was used to estimate the values of
attery model components; the future capacity value was extrapo-

ated to give RUL estimation. Compared to the previous paper [39],
nternal battery parameters were not inferred from EIS measure-

ent. Instead, a combination of empirical models was explored to
epresent energy losses incurred by IR drop, activation polarization
nd concentration polarization.

. Conclusion

The Li-ion battery has been widely regarded as the most promis-
ng energy storage solution to electrify the U.S. transportation
ector and reduce the consumption of gasoline. However, the reli-
bility of Li-ion battery in high current application has long been a
oncern since large Li-ion batteries tend to have lower thermal sta-
ility, and the phenomenon of capacity loss becomes very severe in
igh current application. Li-ion technology will of course continue
o evolve and the reliability of such batteries will improve. No mat-
er how good a Li-ion battery is, however, the system will degrade
ver time, and the rate of degradation is affected by environmen-
al impacts and operation profiles. Therefore, it is desirable to be
ble to detect the underlying degradation and to predict how soon
he Li-ion battery will fail or reach a level that cannot guarantee
atisfactory performance. This paper reviews recent research and
evelopment in health monitoring and prognostics of Li-ion batter-

es. Various algorithms, models and approaches are discussed for
OC estimation, voltage estimation, capacity estimation and RUL
rediction. It is our hope that these summarizations and discus-
ions will give readers a broad perspective on both progress in, and
hallenges of Li-ion battery health monitoring and prognostics.

Though not discussed in this review, it is also worthwhile to
oint out the importance of establishing innovative business mod-
ls and designing unique managerial strategies in promoting the
arket penetration of hybrid or battery electric vehicles. More and
ore governments, automotive manufacturers, charging service

roviders and energy companies are reaching agreements of collab-
ration and committed to deploy electric vehicles in mass scale. The
atest advances include Better Place and Renault launching Fluence
.E, an electric car featuring a fixed-priced package of “unlim-
ted mileage” and utilizing wind energy (with DONG Energy) [41];
oulomb Technologies installing ChargePoint stations at Missouri-

ased Novus International, Inc that deliver benefits such as access
ontrol, data collection and Smart Grid compatibility [42]; Toyota,
lectricite de France (EDF) and the city of Strasbourg launch-
ng large scale PHEV demonstration in Strasbourg that highlights

[

[
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installing charging stations at private homes and various public
sites [43].
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